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SUMMARY 

Epithelial-mesenchymal transition (EMT) is a conversion that facilitates organ 

morphogenesis and tissue remodeling in physiological processes such as embryonic 

development and wound healing. A similar phenotypic conversion is also detected in 

fibrotic diseases and neoplasia, which is associated with disease progression. EMT in 

cancer epithelial cells often seems to be an incomplete and bi-directional process. In this 

Review, we discuss the phenomenon of EMT as it pertains to tumor development, 

focusing on exceptions to the commonly held rule that EMT promotes invasion and 

metastasis. We also highlight the role of the RAS-controlled signaling mediators, ERK1, 

ERK2 and PI3-kinase, as microenvironmental responsive regulators of EMT. 

 

INTRODUCTION 

Simple epithelia are composed of cohesive sheets of cells connected by tight junctions 

and polarized in an apical-basal orientation relative to an underlying basement membrane 

(BM; Figure 1). The surrounding mesenchymal cells are embedded within the interstitial 

extracellular matrix (ECM); lacking intercellular junctions, they manifest primarily 

anterior-posterior polarity.1,2 These structural differences are reflected in the 

characteristic genes each cell type expresses: epithelial cells express distinct junctional 

proteins like E-cadherin, and epithelial-specific cytoskeletal proteins like cytokeratins, 

while mesenchymal cells express N-cadherin and mesenchymal-specific vimentin3 (Table 

1). 

 



Desmoplasia, the appearance of fibrous, mesenchymal-like tissue in the peritumor 

stroma, is associated with poor clinical outcome.4 Recent gene-profiling experiments 

suggest that the presence of a mesenchymal gene signature in tumors is predictive of poor 

clinical outcome in colorectal, breast and ovarian cancers.5–10 The principal cell types that 

contribute to the desmoplastic stromal reaction and to the mesenchymal gene signature 

are fibroblasts, which reside in the stroma and produce interstitial ECM molecules, and 

myofibroblasts, which produce growth factors, cytokines, and ECM, and which also act 

to contract the ECM. Myofibroblasts have long been thought to derive from fibroblasts, 

but recent studies show that a substantial proportion of these cells are derived from EMT 

associated with tumor progression, tissue fibrosis and other pathologies.8  

  EMT involves fundamental changes in gene expression that disrupt epithelial 

polarity and that establish a mesenchymal phenotype with concomitant alterations in 

cytoskeletal organization, cell adhesion, and ECM production (Figure 2).1,8,11 This 

process of phenotype conversion is well-conserved throughout the vertebrata, having 

emerged more than 500 million years ago.11,12 More recent observations have led to 

suggestions that EMT contributes to the phenotypic conversions observed in tissue 

fibrosis,3,13–17 chronic inflammation,18 similar to conversions that occur in rheumatic 

diseases and cancer progression.1,8,19–23 Several recent reviews have summarized key 

signaling pathways involved in EMT and have probed the link between the tumor 

microenvironment, fibrosis, EMT, and cancer progression.8,24,25 In this Review, we 

expand upon these ideas by analyzing the mechanistic processes involved in this EMT 

conversion as part of the broader function of epithelial plasticity in tumor progression. 

We focus on the role of RAS signaling in epithelial tissue plasticity because EMT in 

cancer is a dynamic and often incomplete process regulated by the microenvironment and 

RAS and its effector pathways, most notably ERK1, ERK2 and PI3-kinase/Akt. 

Surprisingly, these pathways are responsive to the microenvironment even when RAS is 

mutated into an activated form. 

 

 



EMT IN CULTURE IS PART OF AN INTRINSIC EPITHELIAL TUMOR CELL 

PLASTICITY  

 When Boyer and colleagues studied cultured cells26 they first described EMT as a 

morphological change from epithelial-like tumor cell sheets to scattered, fibroblast-like 

cells capable of invading the basement membrane (Figure 3A). EMT has more recently 

been shown to occur during normal mammary gland morphogenesis and seems to be 

required for formation of ducts.27 Since the initial observations, EMT in cultured cancer 

cells has been characterized on the molecular level; altered expression profiles, 

subcellular localizations, and activity levels are now commonly used to identify EMT in 

culture (Table 1).3 EMT in culture can be either stable, i.e., the mesenchymal phenotype 

is sustained after the stimulus provoking the conversion is removed, or reversible, i.e., the 

cells revert, or undergo a mesenchymal-epithelial transition (MET), when the stimulus is 

removed. Experiments that quantitatively define the transient and incomplete phenotypic 

changes often observed in cultured tumor cells provide insight into the dynamic role 

EMT may play in neoplastic processes.    

Insight into the complexity of EMT has been provided by studies that have used 

gene transcription and proteomic microarrays to assess EMT and MET.28 Additional data 

suggest that the gene signatures for EMT and more generally, tumor epithelial cell 

plasticity are controlled by tissue and microenvironmental factors.8 A comparison of 

transcriptional analyses of TGF-β1-induced EMT in EpH4 mouse mammary epithelial 

cells (transient EMT associated with a scattering phenotype) and EMT induced in EpH4 

derivatives such as c-Fos-ER-EpH4 (stable EMT without induction of malignancy) and 

RAS-EpH4 (stable EMT with induction of malignancy) revealed a common EMT gene 

signature distinct from that associated with scattering, metastasis or oncogene expression 

(Figure 4A). Furthermore, a number of the genes in this signature have been linked to 

poor outcome in breast cancer.28  Intriguingly, some changes in gene-expression profiles 

also overlap with those documented to occur during EMT conversion of the medial edge 

epithelial seam in the embryonic palate.  

Figure 4 B,C shows the extent of this overlap and compares expression of genes 

that are upregulated by at least two-fold during EMT of EpH4 mammary cells with those 

altered during EMT in the embryonic palate.29 There are similar but not identical 

 



alterations in the expression of gene sets in EpH4 mammary cells and embryonic palate. 

There is overlap in genes that are down-regulated during EMT of EpH4 cells compared to 

the gene profile altered during palatogenesis: 70% of genes down regulated in EpH4 cell 

EMT-specific are also altered by more than two-fold during palatogenesis (Figure 4D). 

The similarity between these two EMT signatures might result from the important role of 

TGF-β1 in driving mesenchymal conversion of both EpH4 cells28 and the embryonic 

palate medial ridge epithelium.29 Even though an EMT involves acquisition of at least 

some mesenchymal properties, the EMT-specific gene signature of EpH4 cells shares 

surprisingly few gene expression changes in common with stromal signatures. Such gene 

changes include the fibroblast serum response that encompasses genes that are commonly 

upregulated in fibroblasts from different tissues following serum stimulation in culture, 

and which predicts both poor outcome in breast and other cancers and enhances the 

prognostic value of an “invasiveness” gene signature that predicts poor outcome in breast 

cancer.6,17 A limited overlap in altered gene expression is observed between the EMT-

specific EpH4 cell gene signature and tumor stromal signatures such as head and neck 

squamous cell carcinoma (HNSCC)30 and prostate cancer31 (Figure 5). Furthermore, the 

EpH4 mammary cell EMT gene signature bears little resemblance to an EMT signature 

of HNSCC32 (Figure 5). Although these comparisons are limited, gene-signature analysis 

indicates that EMT is a process that is distinct from metastasis or tumorigenesis per se 

and could be tissue and microenvironment-specific, but has some resemblance to the 

embryonic process, at least when driven by a common factor such as TGF-β1.              

These studies illustrate that EMT in cancer is a complex process that seems to be 

a subset of an extensive conversion program.1,33-37 The dynamic nature of tumor 

phenotype inter-conversion is more difficult to capture in vivo and has rarely been 

documented. A conversion of breast tumor ductal epithelial cells into myoepithelial cells 

and myofibroblasts, however, is suggested by both the residual expression of epithelial 

keratin markers in myoepithelial and myofibroblast cells and the simultaneous expression 

of myoepithelial (e.g. K14, K17 and vimentin) and myofibroblast (e.g. vimentin and 

alpha smooth muscle actin) markers.38 Retention of some epithelial and myoepithelial 

markers in “transdifferentiated” myofibroblasts, as well as evidence of non-random X-

chromosome inactivation patterns38 also demonstrate epithelial plasticity towards the 

 



fibroblast phenotype. These results suggest that adult epithelial cells have a capacity to 

acquire aspects of a mesenchymal phenotype and vice versa in culture and in breast 

cancer. The apparent rarity of an EMT in human tumor samples likely reflects its 

transient nature and its possible function as a brief pro-invasion conversion program that 

is required for colonizing distant tissues.   

 

CLINICAL SIGNIFICANCE OF EMT 

Although EMT has been clearly documented in cultured human cancer cell lines and in 

some human tumors, its prevalence in aggressive tumors and its role in clinical 

progression are still controversial.33,39 A clear demonstration of EMT in most human 

neoplastic disease has been compromised by the cellular heterogeneity of most human 

tumors and by the lack of clear mesenchymal and epithelial tumor in solid tumor 

biopsies. Evidence that EMT might be highly localized and transient or limited to specific 

steps in metastatic colonization32,40 further complicates clinical analysis of this process.  

Uncertainty regarding a clinical role for EMT in tumor progression is fueled by the rarity 

of morphological changes observed in primary tumors by pathologists. Nonetheless, a 

number of studies showing that expression of EMT-related genes (Table 1)1,41 are 

associated with the metastatic/invasive phenotype. Furthermore, a recent study that 

compared the gene signature of metaplastic breast cancer with breast ductal carcinoma, 

showed unique downregulation of epithelial genes and upregulation of mesenchymal 

genes in metaplastic breast carcinoma.42 EMT might therefore be a feature of breast 

carcinoma subtypes. These studies justify further assessment of EMT as an essential 

component of malignancy. 

Nevertheless, increased expression of EMT markers has been detected at the 

invasive fronts of aggressive tumors.1 Data illustrate an association between known 

regulators of EMT (e.g. Snail, Twist, Slug) and aggressive tumor behavior in animal 

models and poor clinical outcome in cancer patients, suggesting a role for EMT in tumor 

progression.1,23,43 The pleiotropic nature of EMT regulators such as Snail, make it 

difficult to determine the extent to which they are causative of EMT in human cancer.44  

One approach used to detect diagnostic, tissue-specific EMT markers is to identify gene 

expression alterations associated with conversion in human tumors, animal cancer 

 



models, or cultured cells and then assess whether or not these gene signatures are 

correlated with clinical outcome. Such transcriptional profiling experiments resulted in 

the identification of a ‘wound responsive’ gene signature7 that predicts poor outcome in 

breast cancer patients and that increases the predictive value of other gene signatures for 

poor outcome in this disease. Similarly, identification of key transcriptional alterations 

associated with the response of human breast epithelial cells to organotypic three-

dimensional culture conditions was also predictive of outcome in breast cancer patients.45  

While the prognostic value of an EMT to breast cancer progression per se has to 

our knowledge not been reported, a number of genes in the EpH4 mammary cell 

EMT/metastatic gene signatures and mammary tumor cell signature are associated with 

poor prognosis in breast cancer.28  Comparison of the EMT-specific EpH4 mammary cell 

gene signature has limited overlap with two metastasis/invasion gene signatures that 

predict poor clinical outcome in breast cancer (Figure 5).10,46  More in-depth studies of 

this type could help to clarify the clinical significance of an EMT to tumor progression.      

 

POSSIBLE FUNCTIONS OF EMT DURING TUMOR PROGRESSION 

Numerous studies have shown that blocking the expression or impairing the function of 

EMT-regulating factors blocks migration and invasion in cultured epithelial cells. 

Invasion and metastasis of epithelial tumors, however, can occur in the absence of any 

detectible EMT, and even in the presence of EMT, invasion and metastasis may not 

occur.1 For example, metastasis of some bladder cancer cell lines was associated with 

conversion to an epithelial phenotype (MET) rather than with retention of the 

mesenchymal phenotype,47 while desmoid tumors are mesenchymal and locally invasive 

but do not metastasize.48 EMT can be functionally uncoupled from the processes of 

invasion and metastasis. Conditional expression of TGF-β1 in mouse keratinocytes in the 

presence of a functional TGF-β1 receptor promoted EMT and metastasis in chemically-

induced papilloma; however, expression of a dominant-negative TGF-β1 receptor 

blocked the induction of EMT but did not influence the ability of TGF-β1 to promote 

metastasis.49 Such observations indicate that it might be an oversimplification that EMT 

as responsible only for increased migratory and invasive capacities.   

 



 A broader perspective of the role of EMT in cancer can be gleaned from the 

study of EMT in normal development. Growing evidence suggests that EMT is integral to 

normal tissue repair and renewal processes50–53 and may contribute to fibrosis when these 

processes are sustained or otherwise aberrant.1,8,15,18,54 As predicted by analysis of EMT 

gene signatures, EMT has been documented in keratinocyte migration at wound sites55 

and in response to UV irradiation. EMT also occurs transiently at the tips of growing 

mouse mammary gland branches as they invade the fat pad during branching 

morphogenesis,27 a process that resembles tumor invasion into adjacent tissues. In such 

instances, EMT-related processes coordinate epithelial cell movement rather than 

dissemination. 

Transient EMT in cancer can provide fibroblast-like properties to tumor cells 

even in the absence of complete morphological alteration. Several reports suggest that 

conversion of non-small-cell lung carcinoma (NSCLC) to a mesenchymal phenotype 

affects their sensitivity to mitogens and to anti-proliferative drugs.  For example, EMT in 

NSCLC, which was detected by a mesenchymal gene signature, predicted loss of 

response to epidermal growth factor receptor (EGFR) activation and insensitivity to the 

EGFR inhibitor erlotinib.56,57 Experimental model studies have shown that acquisition of 

resistance to drugs such as tamoxifen is associated with and may even promote EMT.58 

These studies demonstrate that EMT can be associated with changes in responsiveness to 

mitogens and anti-hormone therapy. It is not clear whether these effects are a direct or 

indirect consequence of a phenotypic conversion. EMT could directly affect responses to 

mitogens and hormones as a result of altered expression of specific growth factor 

receptors, such as EGFR. Mesenchymal cells also differ from epithelial cells in their 

expression of transporters, and this could affect sensitivity to specific drugs.59,60  

EMT may also perform key immune modulatory functions during tumor 

progression. For instance, fibroblasts possess distinct immunomodulatory activities; they 

can permit leukocyte infiltration and retention within tissues at wound sites, by 

presenting antigens to the immune system, and by modifying T-cell responses. Thus, 

fibroblasts could act to mask tumor antigens and to protect tumors from immune 

surveillance.61 Fibroblasts produce and respond to a different set of cytokines and growth 

factors than epithelial cells and are more responsive to the mitogenic and motogenic 

 



effects of platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) than 

epithelial cells. These growth factors are abundant in the microenvironment of tissues 

undergoing extensive remodeling as well as in tumors, and transiently or reversibly, EMT 

might facilitate growth of epithelial tumor cells.62 Transient EMT allows epithelial cells 

to temporarily evade the effects of growth-inhibitory factors. Using a tissue 

micropatterning approach, Nelson and coauthors showed that a transient EMT occurred 

in regions of lowest concentration of the branching inhibitor TGF-β1.27 Transient EMT 

may provide the ductal cells with a temporary release from the inhibitory growth effects 

of TGF-β1, and allow response to other mitogens in the microenvironment.63 In 

summary, the likely transient nature of EMT and paucity of mesenchymal markers for 

EMT have limited an assessment of the extent this conversion contributes to tumor 

progression. Microdissection techniques that enable sampling of the tumor edge as well 

as improved imaging resolution in vivo will also contribute in clarifying the role of EMT 

in tumor metastasis.     

   

MOLECULAR PATHWAYS THAT REGULATE EMT 

Identifying the molecular pathways that regulate EMT in cancer cells has been the 

subject of intense investigation.1,19,64–67 While the processes involved in EMT have 

distinct characteristics in different tissues, RAS-regulated ERK1/ERK2 and PI3-kinase 

signaling pathways are increasingly recognized as key mediators of tumor cell plasticity.  

Gene signatures of de-regulated RAS pathways are common in human tumors and these 

as well as other oncogenic pathway signatures have permitted risk stratification in many 

types of human cancers.68,69 

RAS proteins act as switches controlling many downstream signaling pathways 

and are triggered by microenvironmental factors such as growth factors and ECM 

molecules.70–72 Increased expression and/or mutation of RAS is a common early event in 

human tumors.66,71 In breast cancer, mutations that result in increased expression of RAS 

are more common than mutations that result in constitutive activation,73 and increased 

activity of the RAS-regulated downstream mediators, PI3-kinase and ERK1/ERK2, is a 

poor prognostic indicator.74–79 RAS-regulated pathways can induce autonomous, stable 

EMT in mammary epithelial cells. For example, exposing EpH4 cells with activating 

 



RAS mutations to TGF-β1 stimulates autocrine production of mesenchymal factors such 

as PDGF-A, PDGF-B, and the PDGF receptors alpha and beta, which maintain EMT 

even when exogenous TGF-β1 is withheld. In the absence of constitutively activated 

RAS signaling pathways in parental EpH4 mammary cells, TGF-β1 induces an 

incomplete and transient mesenchymal conversion that is reversible when TGF-β1 is 

removed.80,81   

ERK1/ERK2 and PI3-kinase-regulated pathways play central roles in tumor cell 

EMT. PI3-kinase stimulates proliferation, blocks apoptosis, and promotes cadherin 

isotype switching upon exposure to interstitial collagens;65,82 ERK1/ERK2 disassembles 

adherens junctions and induces expression of mesenchymal ECM components such as 

tenascin-C as well as matrix metalloproteinases (MMPs).83,84 Both pathways regulate the 

transcription factors Slug and Snail, which in turn promote EMT by suppressing 

expression of E-cadherin, genes encoding epithelial tight junction components, and 

epithelial-specific cytokeratins; loss of E-cadherin induced by extracellular MMPs can 

induce EMT as well.85–87 Activation of ERK1/ERK2 and PI3-kinase pathways regulate 

tumor suppressive effects of environmental factors such as TGF-β1, promoting growth 

and stabilization of EMT,88 an effect that is achieved by linking TGF-β1 receptor activity 

to PI3-kinase and ERK1/ERK2 signaling pathways.28,49,80 RAS, PI3-kinase, and 

ERK1/ERK2 mediators are controlled through alteration of integrin-responsive signaling 

pathways: β1-integrins modulate the activity of growth factor receptors such as EGFR 

and PDGFR, which activate ERK1/ERK2 and PI3-kinase.89,90 Additionally, the nuclear 

localization of activated ERK1/ERK2, which is required for its effects on gene 

transcription, is regulated by hyaluronan.91 Thus, ECM molecules in combination with 

growth factors present in the tumor microenvironment control the localization and 

activation status of these RAS-effectors thereby determining the precise effect of these 

pathways on tumor cell behavior and differentiation/plasticity (Figure 6).   

   

CONCLUSIONS 

A more-complete definition of how EMT contributes to cancer progression requires 

analysis of EMT during normal tissue renewal and development of mechanistic assays for 

in situ detection of EMT as well as continued identification of effectors of EMT that are 

 



prognostic for tumor outcome. Ras-regulated ERK1/ERK2 and PI3 kinase signaling 

pathways are modulated by elements of the tumor microenvironment suggesting 

functions beyond their well-studied roles in motility and proliferation. Another active 

field involves identification of EMT regulatory pathways in the context of epithelial 

plasticity to identify potential targets for therapy. In parallel, technical advances in 

accurate sampling and visualization of individual cells will enable isolation and analysis 

of the key regulators of tumor EMT.  

 

Figure legends 

 

Figure 1 Common morphological characteristics of epithelial and mesenchymal 

cells. Epithelial morphology is characterized by an apical-basal polarity, contact with a 

basal basement membrane and formation of extensive cell-cell contacts including tight 

junctions. An anterior-posterior polarity is lost if any cell-cell junctions and residency 

within a more unstructured interstitial matrix characterize mesenchymal morphology.   

 

Figure 2 EMT of mammary epithelial cells. Treatment of mouse mammary epithelial 

cells with MMP-3 stimulates breakdown of epithelial structure and acquisition of a 

mesenchymal morphology.  Red, f-actin; blue, DAPI. 

 

Figure 3  Dynamic role of EMT in mammary gland neoplastic processes. EMT 

during mammary tumor progression is postulated to facilitate tumor cell invasion and 

colonization of distant tissues. EMT permits efficient penetration of vessels and escape 

into distant tissues such as the lung or bone. A mesenchymal phenotype might be retained 

or may revert to an epithelial phenotype (MET) depending upon the tissue 

microenvironment. For example, some microenvironments such as those provided by 

bones can offer selective growth for a mesenchymal phenotype while others (e.g. lung) 

may favor growth of an epithelial phenotype. Abbreviations: EMT, epithelial–

mesenchymal transition; MET, mesenchymal– epithelial transition 

 

 



Figure 4 Overlap between the EMT gene signature of EpH4 mammary cells and 

embryonic palate overlap. (A) A Venn diagram illustrates the overlap between the Eph4 

metastasis and EMT gene signatures for both upregulated and downregulated expression 

of genes. These results show that EMT can be distinguished from metastasis as a 

molecular process. (B) A Venn diagram shows the number of upregulated EMT-specific 

genes in Eph4 cells that are also altered in embryonic palate undergoing EMT, and are up 

and down-regulated by at least two fold.  Both EMT processes are in response to TGFβ1.  

Approximately 50% of EMT-specific genes upregulated in EpH4 cells are also 

upregulated during EMT associated with embryonic palate morphogenesis. (C) The table 

identifies the genes that are commonly altered during EpH4 mammary cell and 

embryonic palate EMT. Of the 21 upregulated EpH4 mammary cell EMT genes, 10 are 

increased (+) in embryonic palate undergoing EMT, 8 are not altered (-) and 3 are down 

regulated (arrow). (D) The table shows the number of down-regulated EMT-specific 

genes of EpH4 mammary cells that are commonly altered in embryonic palate 

undergoing EMT.  

 

Figure 5 Comparison of EpH4 mammary cell EMT gene signature with cancer-

related gene signatures. Both upregulated and down regulated EMT-specific genes from 

EpH4 mammary cells were compared with gene-expression profile changes during EMT 

of head and neck squamous cell carcinoma (HNSCC), stromal gene signatures that have 

prognostic value in breast and other cancers, and metastasis invasion gene signatures that 

predict poor outcome in breast cancer. Limited overlap is seen between the EpH4 EMT-

specific gene signature and these cancer-related gene signatures.   

 

Figure 6. Microenvironmental and spatial regulation of signaling pathways 

controlling EMT.  The RAS-ERK1/ERK2 pathway is an example a signaling module 

that is responsive to microenvironment cues and requires specific subcellular localization 

in determining the consequences to gene expression and tumor phenotype. A simplified 

version of this complex process is illustrated in the diagram. Extracellular matrix 

components interact with integrin receptors at the cell surface (step 1) and the affinity of 

this interaction is modified by growth factor-regulated signaling in a process known as 

 



outside-in signaling (step 2). Conversely, the affinity of the integrin:extracellular matrix 

interaction affects growth factor regulated signaling in a process known as outside-in 

signaling (step 3). The collective interactions between integrins and growth factor 

receptors promote the localization and activation of lipid-modified RAS (2) at the inner 

cell membrane leaflet (step 4). Activated RAS then selectively activates kinases such as 

ERK1/ERK2 (3) but also other pathways such as the PI3 kinase/AKT pathway (step 5).  

RAS also blocks the tumor suppressing activity of TGF-β1 (step 6) by linking this  

pathway to ERK1/ERK2 signaling pathways (step 5). This linkage promotes the pro-

invasion properties of TGF-B1. Activated ERK1/ERK2 must translocate to the nucleus or 

cell adhesion sites known as focal contacts to have access to target proteins that regulate 

EMT/motility/invasion. ERK1 and ERK2 regulate gene expression (e.g. MMP-9) further 

modifies the tumor cell microenvironment thereby affecting integrin/growth factor 

receptor signaling pathway activation status. This downstream consequence of 

RAS/ERK1/2 activation and the reversal of Steps 1–5 have profound effects on tumor 

phenotype even when other pathways are mutated.  
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Figure 1. Common morphological characteristics of epithelial and mesenchymal cells
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Figure 2. EMT of mammary epithelial cells.



Figure 3. Dynamic Role of EMT in mammary gland neoplastic processes
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Figure 6.  Microenvironmental and spatial regulation of signaling pathways controlling EMT
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